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Abstract. A nonlinear set of lwo coupled reaction-diffusion equations is investigated 
analyiically to obtain travelling wave solutions. First, the series method of Hereman el al. 
involving powers of decaying erponentials, is used to determine the width and the velocity 
of those waves. Further, IO get a suitable analytical expression for them, anocher power 
series is introduced For whtch now a tanh function acts as new variable. As a result, 
recursion relations can beset up. Keeping only the lowest order terms, neglcnting coefficients 
of higher order, we find solutions which correspond with earlier numerical calculations. 

We study a set of two nonlinear dynamical equations, which describe reaction and 
diffusion in simple autocatalytic systems with linear decay. It was shown numerically 
that in such systems travelling wave solutions could exist (Merkin and Needham 19891, 
for certain values of the linear decay parameter. This set is written as: 

if we assume quadratic autocatalysis. 
For our purposes, we transform the above set into 

LA+ B = AB 
_- r,B 4K_R = AR 

withA=l-U,  B = p , X = l - k a n d  

The required bourtdary conditions are: A - A, (0 < A, S 1 ) for x -+ -m, A + 0 for x -f +M 
and B-.O for /X I>  A. The latter condition expresses t3e fact that B must represent a 
localized quantity. 

In the absence of linear decay ( k  = 0 or K = l) ,  it is easily observed that the quantity 
A, as well as B, satisfy the same dynamical equation 

L F + F = F ?  (3) 

which is known as Fisher’s equation. 
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A travelling wave solution of this equation reads: 

F =  ( l j4)(  1 -tan,[& ( x - 5  u t ) ] ] '  (4) 

and was obtained by Ablowitz and Zepetella (1979) with a series solution and a 
non-trivial expansion, by Wang (1988) using an ingenious trick and by Hereman and 
Takaoko (1990) with an exponential series method. 

Notice that F +  1 for x +  -a and F+O for x++m. The quantity A in this limit 
thus retains the required boundary condition as mentioned before. On the other hand, 
the quantity B loses its localized property if K = 1 .  We will come back to this point 
later on. 

The problem is first tackled with the algebraic method of Hereman et a /  (1990). 
This systematic method has been used to construct travelling wave solutions of several 
nonlinear evolution equations. In particular Fisher's equation and related problems 
are treated successfully. 

Hence we start with the following expansions for A and B: 
m 

A= E c.g"(5) (Sui) 
n = ,  

g=exp(-CO C > 0  and i $ = x - u f .  ( 6 )  

Upon substitution of these expressions in (2), collecting next all terms with the 
same power in g, one arrives at an infinite set of nonlinear recursion relations for the 
coefficients c, and d ,  : 

"-1 

(C2n2-  Cnu)c, + d .  - c,d.-, = O  (70)  
* = I  

"-1 

(C2n2- Cnu)d, + K d .  - 1 e,d.-, = O .  (7b)  
m = ,  

It is appropriate to choose c ,  = d ,  = 0 to get unique values for both C and U. For n = 2 
and n = 3 the nonlinear terms in (7a) and (76) disappear and (76) renders the following 
relations: 

4C2-2Cv + K = O .  (8) 

9C2-3Cu+K=0.  (9) 

We remark that the coefficients d2 and d ,  are now considered as free parameters. From 
(8) and (9) we get: 

C = m  and v = 5 m  = 2 . 0 4 f i .  (10) 

As a consequence, to exhibit travelling waves, only values of K between 0 and 1 are 
allowed. This fact was also reported by Needham and Merkin (1989). 
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For K = 1 Fisher’s case is recovered: c, = d, ( i  = 2,3 . . .); together with the nontrivial 
choices d, = 1 and d, = -2 the series expansion (Sa)  or (Sb)  eventually can be written 
in the following closed form: 

Unfortunately, in the general case that K # 1, such a summation is not possible because 
the higher the rank of the coefficients, the more complex the relations become. Moreover 
we could not find any relevant values for the free parameters. All these facts strongly 
indicate that in general no closed analytical form for the sought solutions will exist. 

In view of the result for K = 1, we introduce a series expansion in terms of a tanh 
function. Such expansions were already used by Huilin and Kelin (1990), to solve a 
KdV-BUrgeB type of equation and by Pfersch (1990) to treat a Schrodinger equation. 

The solutions we are looking for are supposed to be functions of 

Y = tanh (‘I) with ‘I = c ( x  - D f )  (12) 
whereas the parameter c obviously can be defined as c = C / 2 ,  in view of the results 
obtained in Fisher’s case (see (10) and (11)). Furthermore, it is convenient to transform 
also the L operator in terms of this new variable Y 

dY2 d2 1 ’ d 
d Y  

(cu - 2 2 Y )  -+ c2( 1 - Y’) - 

Now a series expansion in Y can be used conveniently. In a first attempt a straightfor- 
ward expansion was used. As a result very complicated relations emerge and, in view 
of the required boundary conditions (for Y + * I ) ,  the results were difficult to interpret. 

To handle this problem, we have taken into account the boundary conditions within 
the series expansion. Therefore the following relations for A and B are introduced: 

A = ( 1  - Y)’[ Ro+ a ,  Y +  R2 Y 2 . .  . ]  

B = ( 1  - Y)’( 1 + Y ) [ b o +  b,  Y +  b z Y 2 + .  . .]. 

. 

To get Fisher’s case, one has tc  impose also following conditions on the coefficients: 

and ai=O ( i  = 1,2, 3, . . .) (16)  a -1 
0 - 4  

b - ?  
0 - 4  and b2j= -b2j+1 ( j  = 0 , 1 , 2 )  (17) 

for K = 1 .  
The quantities A and B i n  this case coincide with the solution F of Fisher’s equation 

(see ( 4 )  or (11)). 
Upon substitution of (14)  and (15) into ( 2 a )  and (Zb) ,  together with the transforma. 

tion formula (13), we obtain recursion relations among the coefficients of both 
expansions. 

After some algebra we get from ( 2 a )  in lowest order (i.e. the Y o  term): 

- :KO, + &KaZ - boao + bo + aKa, = 0. (18)  
Similarly, from ( 2 6 )  we get the recursion relations: 

Kb,+ 6Kb0 - 12b,a0+4Kb, = 0 (19) 
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and 

IOKb, -12boat- 12b,a,,+ IOKb2+3Kb3=0 (20) 
by equating the terms in Yo and Y' respectively. If necessary, the other relations can 
be found as well. 

Due to the number of unknowns and the occurrence of cross terms in these relations, 
they are obviously difficult to solve. Fortunately, the coefficients we are looking for 
have to satisfy the above-mentioned conditions (16) and (17) in the limit. K + !! wi!! 
direct us to perform these cumbersome calculations. As a first example, if we restrict 
the calculations to the relations given above, we have found the following values for 
the coefficients: 

a ,  = -(:)(I - K )  and a;=O (ia2) 
K 

a0=- 
4 

K 2  Z K 2  
b (1 - K )  

K 2  
b v = T  

K 3  b3 = -- 
4 

I- 4 11 
(22) 

b, = 0 (j24). 

Because the number of unknowns exceed the number of relations, other values for the 
coefficients could be found as well; here we have put forward an approximation valid 
for small K values. This leads to the approximate solutions: 

A;. - (1-Y)2[1-(1-K)Y] (3 
B -($)(I - Y2)(l - Y ) [ l  - ( f t + ~ K ) Y + ( i ? i + i 8 i K ) Y 2 - K Y 3 ]  (24) 

\ 4 /  

with Y = t a n h ( K / 2 ~ ) ( ~ - 5 ~ u l ) .  
Obviously, the more one should approach the limit K + 1, the more coefficients 

and recursion relations one has to include in the calculations. Further investigations 
are needed to elaborate this in more detail. Finally, we are able to compare the analytical 
results (23) and (24) with the numerical calculations of Merkin and Needham (1989), 
which are particularly detailed in the case that K = 112: 

Numerical results Analytical results 
O < K s ! :  travelling waves same 

velocity: U = 2JiT U = 5 m  = 2 . 0 4 a  (25) 
A( Y+ I )  = O  A( Y+ I )  = O  (26) 

K = L .  2 .  A( Y+ -1) = A,=0.773 A(Y+ -1)  = A,=0.75 (27) 
E :  asymmetric sech form same (28) 
B,,,=1.36 E,,,,,= 1.21. (29) 

Moreover, the boundary condition A( Y +  - I )  =A,  applied to (23) agrees fully with 
the numerical results for 0 < K < 112. As a conclusion, we have set up a series expansion 
for the travelling wave solutions of coupled reaction-diffusion equations. The velocity 
and the width of these waves are determined. If one closes the hierarchy of relations, 
preliminary calculations lead to analytical solutions, which for small decay parameters 
agree well with the numerical computations. 
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